Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress
نویسندگان
چکیده
Silicon (Si) has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L.) is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this study, seeds of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50, and 75 mM) with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC), and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K(+)), as well as potassium/sodium ion (K(+)/Na(+)) ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na(+) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in stressed plants. On the other hand, application of Si by seed-priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, and levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids and K(+), as well as activities of SOD, CAT, and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na(+), which together with enhanced K(+) level led to a favorable adjustment of K(+)/Na(+) ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K(+)/Na(+) ratio. Thus, our findings demonstrate that seed-priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.
منابع مشابه
Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress
Heavy metals pollution is one of the key environmental problems. In this research, the effect of seed priming with salicylic acid and sodium hydrosulfide was investigated on methionine and arginine amino acids contents and some compounds derived from their metabolism as well as ZmACS6 and ZmSAMD transcripts levels in maize plants under lead stress. For this purpose, maize seeds were soaked in s...
متن کاملEFFECT OF SILICON PRIMING ON SEEDLING GROWTH, ROOT XYLEME ANATOMY AND ION ACCUMULATION OF BARLEY (Hordeum vulgare L.) TO ALLEVIATE DROUGHT STRESS
The detrimental drought effects could be listed as the loss in dry weight and silicon is known to enhance crop tolerance to drought by increasing seedling growth and hydraulic conductivity. To investigate the effects of silicon priming (0, 1 and 2 mM as sodium silicate), on seedling growth and root anatomy of three barley cultivars (Khatam, Rihane, and Nimrooz) a laboratory experiment was condu...
متن کاملThe effect of exogenous silicon on seed germination and seedling growth of wheat cultivars under salt stress conditions
ABSTRACT- Seed germination and early seedling growth are critical stages for plants establishment and production, particularly under salinity conditions. Exogenous application of silicon (Si) can enhance germination as well as seedling growth. In this experiment, the effect of priming with Si (0, 0.75, 1.5 and 2.25 mM sodium silicate) on seed germination and seedling growth under NaCl (0, 100 a...
متن کاملBenefits of Silicon Nutrition on Growth, Physiological and Phytochemical Attributes of Basil upon Salinity Stress
In the present study, improvement of salt tolerance in basil (as a salt-sensitive plant) was investigated through silicon (Si) nutrition. Basil plants were subjected to silicon (0, 3 mM) and salinity (0, 50, 100, 150 and 200 mM NaCl) for a duration of one month. Salt stress significantly decreased the biomass of basil. Si supplement (3 mM) resulted in a considerable increase (averagely +135%) i...
متن کاملInduced salinity tolerance and altered ion storage factor in Hordeum vulgare plants upon salicylic-acid priming
AbstractThis study was undertaken to better understand the probable mechanisms of salt stress tolerance induced by seed priming of salicylic acid (SA) in barley. The barley seeds were pre-soaked by SA or water and then sown under different saline watering regimes including 0.62 (tapwater), 5, 10 and 15 dS m-1 in petri dishes and trend of water absorbing, seedling growth, germination rate and pe...
متن کامل